澍子
07-05
这篇文章不错,转发给大家看看
苹果发布DiffuCode-7B-cpGRPO编程AI模型:基于Qwen2.5-7B,可不按顺序生成代码
免责声明:上述内容仅代表发帖人个人观点,不构成本平台的任何投资建议。
分享至
微信
复制链接
精彩评论
我们需要你的真知灼见来填补这片空白
打开APP,发表看法
APP内打开
发表看法
1
{"i18n":{"language":"zh_CN"},"detailType":1,"isChannel":false,"data":{"magic":2,"id":453269875212784,"tweetId":"453269875212784","gmtCreate":1751683580415,"gmtModify":1751683582060,"author":{"id":3465244030895892,"idStr":"3465244030895892","authorId":3465244030895892,"authorIdStr":"3465244030895892","name":"澍子","avatar":"https://static.tigerbbs.com/20465d2ac0edfd1e2d4ed8bd49a2833a","vip":1,"userType":1,"introduction":"","boolIsFan":false,"boolIsHead":false,"crmLevel":1,"crmLevelSwitch":0,"currentWearingBadge":{"badgeId":"e50ce593bb40487ebfb542ca54f6a561-4","templateUuid":"e50ce593bb40487ebfb542ca54f6a561","name":"明星虎友","description":"加入老虎社区2000天","bigImgUrl":"https://static.tigerbbs.com/dddf24b906c7011de2617d4fb3f76987","smallImgUrl":"https://static.tigerbbs.com/53d58ad32c97254c6f74db8b97e6ec49","grayImgUrl":"https://static.tigerbbs.com/6304700d92ad91c7a33e2e92ec32ecc1","redirectLinkEnabled":0,"hasAllocated":1,"isWearing":1,"stampPosition":0,"hasStamp":0,"allocationCount":1,"allocatedDate":"2023.04.12","individualDisplayEnabled":0},"individualDisplayBadges":[],"fanSize":0,"starInvestorFlag":false},"themes":[],"images":[],"coverImages":[],"html":"<html><head></head><body><p>这篇文章不错,转发给大家看看</p></body></html>","htmlText":"<html><head></head><body><p>这篇文章不错,转发给大家看看</p></body></html>","text":"这篇文章不错,转发给大家看看","highlighted":1,"essential":1,"paper":1,"likeSize":1,"commentSize":0,"repostSize":0,"favoriteSize":0,"link":"https://laohu8.com/post/453269875212784","repostId":2549431108,"repostType":2,"repost":{"id":"2549431108","kind":"news","pubTimestamp":1751679234,"share":"https://www.laohu8.com/m/news/2549431108?lang=&edition=full","pubTime":"2025-07-05 09:33","market":"us","language":"zh","title":"苹果发布DiffuCode-7B-cpGRPO编程AI模型:基于Qwen2.5-7B,可不按顺序生成代码","url":"https://stock-news.laohu8.com/highlight/detail?id=2549431108","media":"IT之家","summary":"IT之家 7 月 5 日消息,苹果公司悄然在 Hugging Face 上发布了一款名为 DiffuCode-7B-cpGRPO 的开源 AI 模型,该模型在生成代码方面具有创新特性,能够不按顺序生成代码,且性能媲美顶级开源编码模型。苹果公司发布的模型名为 DiffuCode-7B-cpGRPO,它基于上月发表、名为《DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation》的论文。在主流编程跑分中,DiffuCode-7B-cpGRPO 保持了在生成代码时不严格依赖从左到右的生成方式情况下,相比较主流基于扩散的编程模型,测试得分提高了 4.4%。","content":"<html><body><p>IT之家 7 月 5 日消息,<a href=\"https://laohu8.com/S/AAPL\">苹果</a>公司悄然在 Hugging Face 上发布了一款名为 DiffuCode-7B-cpGRPO 的开源 AI 模型,该模型在生成代码方面具有创新特性,能够不按顺序生成代码,且性能媲美顶级开源编码模型。</p><p>IT之家注:传统大语言模型(LLM)生成代码的方式,如同大多数人类阅读文本的方式,采用从左到右、从上到下顺序。</p><p>这主要是因为这些 LLM 采用自回归(Autoregression)方式工作,意味着当用户向它们提问后,它们会处理整个问题,预测答案的第一个 token,然后带着这个 token 重新处理整个问题,预测第二个 token,以此类推。</p><p>LLM 还有一个名为“温度”(Temperature)的设置,用于控制输出的随机性。在预测下一个 token 后,模型会为所有可能的选项分配概率。较低的温度意味着更有可能选择最可能的 token,而较高的温度则给予模型更多的自由,选择不太可能的 token。</p><p>而另一种选择就是扩散(Diffusion)模型,这种模型通常用于图像模型。简而言之,模型从一个模糊、噪声的图像开始,迭代去除噪声,同时考虑到用户的需求,逐渐将其引导至更接近用户请求的图像。</p><p><img src=\"https://x0.ifengimg.com/ucms/2025_27/92C36CF2047DD852FD266CC4A69B33327CEC0976_size76_w1024_h341.jpg\"/></p><p>苹果公司发布的模型名为 DiffuCode-7B-cpGRPO,它基于上月发表、名为《DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation》的论文。</p><p>论文描述了一个采用扩散优先策略的代码生成模型,但有一个特别之处:当采样温度从默认的 0.2 增加到 1.2 后,DiffuCoder 在生成 token 的顺序上变得更加灵活,从而摆脱了严格的从左到右的约束。</p><p><img src=\"https://x0.ifengimg.com/ucms/2025_27/E113C77CF99DA893A7D4666B4BB040501A676F82_size70_w1024_h379.jpg\"/></p><p>更为有趣的是,苹果的这款模型建立在<a href=\"https://laohu8.com/S/BABA\">阿里</a>的开源 Qwen2.5-7B 模型上,将这个模型按照 DiffuCoder 论文中的描述,改造成了一个基于扩散的 decoder,然后调整它以更好地遵循指示。完成这些后,他们又用超过 20000 个精心挑选的编码示例训练了它的另一个版本。</p><p><img src=\"https://x0.ifengimg.com/ucms/2025_27/13D5A9E4E35F5DAA224885C98E453B557137AA9E_size26_w1024_h335.jpg\"/></p><p>在主流编程跑分中,DiffuCode-7B-cpGRPO 保持了在生成代码时不严格依赖从左到右的生成方式情况下,相比较主流基于扩散的编程模型,测试得分提高了 4.4%。</p><p><img src=\"https://x0.ifengimg.com/ucms/2025_27/61F27446571FA1C37DB115EDAF7D059DBD5036F0_size94_w1024_h720.jpg\"/></p></body></html>","source":"fenghuang_stock","collect":0,"html":"<!DOCTYPE html>\n<html>\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<meta name=\"viewport\" content=\"width=device-width,initial-scale=1.0,minimum-scale=1.0,maximum-scale=1.0,user-scalable=no\"/>\n<meta name=\"format-detection\" content=\"telephone=no,email=no,address=no\" />\n<title>苹果发布DiffuCode-7B-cpGRPO编程AI模型:基于Qwen2.5-7B,可不按顺序生成代码</title>\n<style type=\"text/css\">\na,abbr,acronym,address,applet,article,aside,audio,b,big,blockquote,body,canvas,caption,center,cite,code,dd,del,details,dfn,div,dl,dt,\nem,embed,fieldset,figcaption,figure,footer,form,h1,h2,h3,h4,h5,h6,header,hgroup,html,i,iframe,img,ins,kbd,label,legend,li,mark,menu,nav,\nobject,ol,output,p,pre,q,ruby,s,samp,section,small,span,strike,strong,sub,summary,sup,table,tbody,td,tfoot,th,thead,time,tr,tt,u,ul,var,video{ font:inherit;margin:0;padding:0;vertical-align:baseline;border:0 }\nbody{ font-size:16px; line-height:1.5; color:#999; background:transparent; }\n.wrapper{ overflow:hidden;word-break:break-all;padding:10px; }\nh1,h2{ font-weight:normal; line-height:1.35; margin-bottom:.6em; }\nh3,h4,h5,h6{ line-height:1.35; margin-bottom:1em; }\nh1{ font-size:24px; }\nh2{ font-size:20px; }\nh3{ font-size:18px; }\nh4{ font-size:16px; }\nh5{ font-size:14px; }\nh6{ font-size:12px; }\np,ul,ol,blockquote,dl,table{ margin:1.2em 0; }\nul,ol{ margin-left:2em; }\nul{ list-style:disc; }\nol{ list-style:decimal; }\nli,li p{ margin:10px 0;}\nimg{ max-width:100%;display:block;margin:0 auto 1em; }\nblockquote{ color:#B5B2B1; border-left:3px solid #aaa; padding:1em; }\nstrong,b{font-weight:bold;}\nem,i{font-style:italic;}\ntable{ width:100%;border-collapse:collapse;border-spacing:1px;margin:1em 0;font-size:.9em; }\nth,td{ padding:5px;text-align:left;border:1px solid #aaa; }\nth{ font-weight:bold;background:#5d5d5d; }\n.symbol-link{font-weight:bold;}\n/* header{ border-bottom:1px solid #494756; } */\n.title{ margin:0 0 8px;line-height:1.3;color:#ddd; }\n.meta {color:#5e5c6d;font-size:13px;margin:0 0 .5em; }\na{text-decoration:none; color:#2a4b87;}\n.meta .head { display: inline-block; overflow: hidden}\n.head .h-thumb { width: 30px; height: 30px; margin: 0; padding: 0; border-radius: 50%; float: left;}\n.head .h-content { margin: 0; padding: 0 0 0 9px; float: left;}\n.head .h-name {font-size: 13px; color: #eee; margin: 0;}\n.head .h-time {font-size: 11px; color: #7E829C; margin: 0;line-height: 11px;}\n.small {font-size: 12.5px; display: inline-block; transform: scale(0.9); -webkit-transform: scale(0.9); transform-origin: left; -webkit-transform-origin: left;}\n.smaller {font-size: 12.5px; display: inline-block; transform: scale(0.8); -webkit-transform: scale(0.8); transform-origin: left; -webkit-transform-origin: left;}\n.bt-text {font-size: 12px;margin: 1.5em 0 0 0}\n.bt-text p {margin: 0}\n</style>\n</head>\n<body>\n<div class=\"wrapper\">\n<header>\n<h2 class=\"title\">\n苹果发布DiffuCode-7B-cpGRPO编程AI模型:基于Qwen2.5-7B,可不按顺序生成代码\n</h2>\n\n<h4 class=\"meta\">\n\n\n2025-07-05 09:33 北京时间 <a href=https://tech.ifeng.com/c/8kjcpymfNdi><strong>IT之家</strong></a>\n\n\n</h4>\n\n</header>\n<article>\n<div>\n<p>IT之家 7 月 5 日消息,苹果公司悄然在 Hugging Face 上发布了一款名为 DiffuCode-7B-cpGRPO 的开源 AI 模型,该模型在生成代码方面具有创新特性,能够不按顺序生成代码,且性能媲美顶级开源编码模型。IT之家注:传统大语言模型(LLM)生成代码的方式,如同大多数人类阅读文本的方式,采用从左到右、从上到下顺序。这主要是因为这些 LLM 采用自回归(...</p>\n\n<a href=\"https://tech.ifeng.com/c/8kjcpymfNdi\">Web Link</a>\n\n</div>\n\n\n</article>\n</div>\n</body>\n</html>\n","type":0,"thumbnail":"","relate_stocks":{},"source_url":"https://tech.ifeng.com/c/8kjcpymfNdi","is_english":false,"share_image_url":"https://static.laohu8.com/e9f99090a1c2ed51c021029395664489","article_id":"2549431108","content_text":"IT之家 7 月 5 日消息,苹果公司悄然在 Hugging Face 上发布了一款名为 DiffuCode-7B-cpGRPO 的开源 AI 模型,该模型在生成代码方面具有创新特性,能够不按顺序生成代码,且性能媲美顶级开源编码模型。IT之家注:传统大语言模型(LLM)生成代码的方式,如同大多数人类阅读文本的方式,采用从左到右、从上到下顺序。这主要是因为这些 LLM 采用自回归(Autoregression)方式工作,意味着当用户向它们提问后,它们会处理整个问题,预测答案的第一个 token,然后带着这个 token 重新处理整个问题,预测第二个 token,以此类推。LLM 还有一个名为“温度”(Temperature)的设置,用于控制输出的随机性。在预测下一个 token 后,模型会为所有可能的选项分配概率。较低的温度意味着更有可能选择最可能的 token,而较高的温度则给予模型更多的自由,选择不太可能的 token。而另一种选择就是扩散(Diffusion)模型,这种模型通常用于图像模型。简而言之,模型从一个模糊、噪声的图像开始,迭代去除噪声,同时考虑到用户的需求,逐渐将其引导至更接近用户请求的图像。苹果公司发布的模型名为 DiffuCode-7B-cpGRPO,它基于上月发表、名为《DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation》的论文。论文描述了一个采用扩散优先策略的代码生成模型,但有一个特别之处:当采样温度从默认的 0.2 增加到 1.2 后,DiffuCoder 在生成 token 的顺序上变得更加灵活,从而摆脱了严格的从左到右的约束。更为有趣的是,苹果的这款模型建立在阿里的开源 Qwen2.5-7B 模型上,将这个模型按照 DiffuCoder 论文中的描述,改造成了一个基于扩散的 decoder,然后调整它以更好地遵循指示。完成这些后,他们又用超过 20000 个精心挑选的编码示例训练了它的另一个版本。在主流编程跑分中,DiffuCode-7B-cpGRPO 保持了在生成代码时不严格依赖从左到右的生成方式情况下,相比较主流基于扩散的编程模型,测试得分提高了 4.4%。","news_type":1,"symbols_score_info":{"AAPL":1,"MACW.SI":0.6}},"isVote":1,"tweetType":1,"viewCount":169,"commentLimit":10,"likeStatus":false,"favoriteStatus":false,"reportStatus":false,"symbols":[],"verified":2,"subType":0,"readableState":1,"langContent":"CN","currentLanguage":"CN","warmUpFlag":false,"orderFlag":false,"shareable":true,"causeOfNotShareable":"","featuresForAnalytics":[],"commentAndTweetFlag":false,"andRepostAutoSelectedFlag":false,"upFlag":false,"length":27,"optionInvolvedFlag":false,"xxTargetLangEnum":"ZH_CN"},"commentList":[],"isCommentEnd":true,"isTiger":false,"isWeiXinMini":false,"url":"/m/post/453269875212784"}
精彩评论